• Visitors Now:
  • Total Visits:
  • Total Stories:
Profile image
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

New MOF Fabric Coating Could Thwart Chemical Weapons, Save Lives

Sunday, June 11, 2017 17:08
% of readers think this story is Fact. Add your two cents.
0

Chemical weapons are nightmarish. In a millisecond, they can kill hundreds, if not thousands. But, in a study published in the ACS journal Chemistry of Materials, scientists report that they have developed a way to adhere a lightweight coating onto fabrics that is capable of neutralizing a subclass of these toxins — those that are delivered through the skin. The life-saving technique could eventually be used to protect soldiers and emergency responders.

Since their first use in World War I, dozens of chemical weapons with devastating potential have been developed. For example, just a pinprick-sized droplet of the nerve gas sarin on the skin is lethal. Recently, scientists have begun exploring the use of zirconium-based metal-organic framework (MOF) powders to degrade and destroy these harmful compounds. 

A new fabric coating could neutralize chemical weapons and help save countless lives.

Credit: American Chemical Society 

MOFs are miniscule, porous structures that have large surface areas that allow them to absorb vast amounts of gases and other substances. The zirconium within them helps neutralize toxic materials. But making MOFs can be tedious, requiring high temperatures and long reaction times. 

 
Plus, most MOF powders are unstable and incorporating them onto clothing has proven challenging. Dennis Lee, Gregory N. Parsons and colleagues wanted to see if they could “grow” MOFs onto fabric at room temperature, potentially creating a lightweight shield that could be used on uniforms and protective clothing.

Building on previous work, the researchers exposed polypropylene, a nonwoven fabric commonly used in reusable shopping bags and some clothing, to a mixture consisting of a zirconium-based MOF, a solvent and two binding agents. To ensure that the coating spread evenly across the cloth, they treated the fabrics with thin layers of aluminum, titanium or zinc oxide. 
 
They tested this combination with dimethyl 4-nitrophenyl phosphate (DMNP), a relatively harmless molecule that has similar reactivity as sarin, soman and other nerve agents. They found that the MOF-treated cloths deactivated the DMNP in less than 5 minutes, suggesting this process is a viable means to create improved protective clothing.

The authors acknowledge funding from the U.S. Army Edgewood Chemical Biological Center and the Joint Science and Technology Office for Chemical and Biological Defense.

Posted ALTON PARRISH, ‘IneffableIsland’

Contacts and sources: 

Katie Cottingham
The American Chemical Society
 
The abstract that accompanies this study is available here.
Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Today's Top Stories

Most Recent Stories

Register

Newsletter

Email this story
Email this story
Share This Story:
Print this story
Email this story
Digg
Reddit
StumbleUpon
Share on Tumblr
GET ALERTS:

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.